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Abstract. We propose two schemes for generating a four-atom cluster state in a thermal cavity. With the
assistant of a strong classical field the photon-number-dependent parts in the effective Hamiltonian are
canceled. Thus the schemes are insensitive to the thermal field. The schemes can also be used to generate
the cluster state for the trapped ions in thermal motion.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 42.50.Dv Nonclassical
states of the electromagnetic field, including entangled photon states; quantum state engineering and
measurements – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions

Quantum entanglement has attracted much attention. It
not only gives the possibility for test of quantum me-
chanics against local hidden theory, but also is the basic
physical resource for quantum computation and quantum
communication. Experimentally the technology of prepar-
ing an entangled photon pair by spontaneous paramet-
ric down-conversion [1] is quite mature. four-photon en-
tangled state [2] and five-photon entangled state [3] also
have been obtained. On the other hand, recent advance in
the cavity quantum electrodynamics system (cavity QED)
and ion traps has opened the new prospects for quan-
tum information processing. In cavity QED, a two-atom
entangled state has been experimentally demonstrated
by use of two Rydberg atoms crossing a nonresonant
cavity [4]. The multi-atom Greenberger-Horne-Zeilinger
(GHZ) states and W state also have been generated [5].
Some research groups also have realized a four-qubit GHZ
state [6], a six-atom GHZ state [7] and eight-qubit W
state [8] in ion traps. Recently Briegel et al. [9] introduced
a class of entangled states, i.e., the cluster states. The clus-
ter states have a high persistence of entanglement and can
be regarded as a resource for GHZ states and are more im-
mune to decoherence than GHZ states. On the other hand,
cluster states have been shown to constitute a universal re-
source for quantum computation. The proof of Bell’s the-
orem without the inequality was given for cluster states,
and Bell inequality is maximally violated by four-qubit
cluster state and is not violated by the four-qubit GHZ
state. Zou et al. [10] have proposed a scheme for genera-
tion of polarization entangled cluster state. Zou et al. [11]
and Dong et al. [12] have presented schemes for generat-
ing a four-atom cluster state via the resonant atom-cavity
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interaction, respectively. Cho et al. [13] also have shown a
method for the generation of cluster states based on the
cavity input-output process and the single-photon polar-
ization measurement. Recently Zheng [14] has given two
schemes for the generation of four-qubit cluster states in
ion-trap systems. Here we propose two schemes to gener-
ate a cluster state of four atoms by the atom-cavity field
interaction. The distinct advantage of the scheme is that
during the passage of the atoms through the cavity field,
a strong classical field is accompanied so that the photon-
number-dependent parts are canceled. Thus the schemes
are insensitive to both the cavity decay and the thermal
field. More importantly, our second scheme can be carried
out only by two steps and in this scheme the cluster state
can be generated in much simpler manner than any of pre-
vious schemes, which might be highly important for the
feasible experimental implementation.

We consider N identical two-level atoms simultane-
ously interacting with a single-mode cavity field, at the
same time the atoms are driven by a classical field. In
the rotating-wave approximation, the Hamiltonian for the
system is [15–18]

H = ω0Sz + ωa+a+
N∑

j=1

[g
2
(a+S−

j + aS+
j )

+
Ω

2
(S+

j e
−iωat + S−

j e
iωat)

]
(1)

where Sz = (1/2)
N∑

j=1

(|ej〉〈ej |−|gj〉〈gj |), s+j = |ej〉〈gj | and

s−j = |gj〉〈ej |, with |ej〉 and |gj〉 being the excited and
ground states of the jth atom, a+ and a are, respectively,
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the creation and annihilation operators for the cavity
mode, g is the atom-cavity coupling strength, and δ is
the detuning between the atomic transition frequency ω0

and cavity frequency ω. ωa is the frequency of the classi-
cal field. Assume ω0 = ωa, in the interaction picture, the
interaction Hamiltonian is

HI =
Ω

2

N∑

j−1

(S+
j +S−

j )+
g

2

N∑

j=1

(e−iδta+S−
j +eiδtaS+

j ). (2)

Define the new atomic basis [16,19]

|+j〉 → 1√
2
(|gj〉 + |ej〉), (3)

|−j〉 → 1√
2
(|gj〉 − |ej〉). (4)

The interaction Hamiltonian can be written as

HI =
N∑

j−1

{
Ωσz,j +
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2
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e−iδta+

(
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1
2
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j − 1
2
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+ e−iδta
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1
2
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j − 1
2
σ+

j

)]}
, (5)

where σz,j = (|+j〉〈+j | − |−j〉〈−j |)/2, σ+
j = |+j〉〈−j | and

σ−
j = |−j〉〈+j |.

According to Schrödinger’s equation, the unitary
transformation is

|ψ(t)〉 = e−iH0t |ψ′(t)〉 , (6)

where H0 =
N∑

j−1

Ωσz,j .

Then we have

i[d |ψ′(t)〉 /dt] = H ′
I |ψ′(t)〉 , (7)

where H ′
I =

N∑
j−1

{(g/2)[e−iδta+(σz,j + σ+
j /2 − σ−

j /2) +

e−iδta(σz,j + σ−
j /2 − σ+

j /2)]}.
Assume that Ω � δ, g and can neglect the terms os-

cillating fast. Then the Hamiltonian can reduce to

H ′
I =

g

2

N∑

j=1

(e−iδta+ + eiδta)σz,j

= g(e−iδta+ + eiδta)Sx, (8)

where Sx = (1/2)
N∑

j=1

(S+
j + S−

j ).

The evolution operator for Hamiltonian H ′
I of equa-

tion (8) can be written in the form of [16,20]

U ′(t) = e−iA(t)S2
X−iB(t)Sxa−iC(t)Sxa+

.

By using the Schrödinger’s equation

i
dU ′(t)
dt

= HiU
′(t),

we have

B(t) =
∫ t

0

g

2
eiδτdτ =

g

2iδ
(eiδt − 1),
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∫ t

0

g

2
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2iδ
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0

B(τ)
g

2
e−iδτdτ =

g2

4δ

[
t+

1
iδ
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]
.

Assume δt = 2π, we obtain B(t) = C(t) = 0. Then we
have

U ′(t) = e−iλtS2
X , (9)

where λ = g2/4δ. The evolution operator of the system is
given by

U(t) = e−iH0tU ′(t) = e−iΩtSx−iλtS2
X . (10)

We note that the evolution operator of the Hamiltonian
is independent of the cavity field state, allowing it to be
in a thermal state.

Using the representation of the operator Sz, the atomic
states |g1g2...gN〉 and |e1e2...eN〉 can be expressed as
|N/2,−N/2〉 and |N/2, N/2〉. These state also be ex-
panded in terms of the eigenstates of Sx [17]

|N/2,−N/2〉 =
N/2∑

M=−N/2

CM |N/2,M〉x, (11)

|N/2, N/2〉 =
N/2∑

M=−N/2

CM (−1)N/2−M |N/2,M〉x. (12)

Assume that N atoms are initially in the state |g1g2...gN〉,
the evolution of the system is

|g1g2...gN 〉 U(t)−→
N/2∑

M=−N/2

CMe−2i(ΩM+λM2)t |N/2,M〉x .

(13)
Now we describe in detail how to generate a cluster state
in cavity QED. Assume that three atoms are initially in
the state |g1g2g3〉. The evolution of the system is obtained
by the above equation. Choose λt = π/4 and Ωt = (2n+
3/4)π, we have

|ψ1〉 =
1√
2
ei(5/8)π(|g1g2g3〉 + i |e1e2e3〉). (14)

Then we send atoms 1 and 2 across another single-mode
cavity simultaneously. With the choice of λt = π/4 and
Ωt = 2nπ, we have the following transformation

|g1g2〉 → 1√
2
e−iπ/4(|g1g2〉 − i |e1e2〉), (15)

|e1e2〉 → 1√
2
e−iπ/4(|e1e2〉 − i |g1g2〉). (16)

Thus the state of the system will be transformed into

|ψ2〉= 1√
2
ei3π/8(|g1g2g3〉+i|e1e2e3〉−i|e1e2g3〉+|g1g2e3〉).

(17)
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Then let atom 3 cross a classical field tuned to the tran-
sition |e〉 → |g〉. Choose the amplitude and phase of the
classical field appropriately so that this atom undergoes
the following transition

|g3〉 → 1√
2
(|g3〉 + |e3〉), (18)

|e3〉 → 1√
2
(|g3〉 − |e3〉). (19)

Then we send atom 3 and atom 4, initially in the state
|g4〉, pass through a single-mode cavity simultaneously.
After an interaction time λt = π/4 and Ωt = 2(n+3/4)π,
and with a transformation |g3〉 → (1/

√
2)(|g3〉 + i |e3〉),

|e3〉 → (1/
√

2)(|g3〉 − i |e3〉), we can obtain

|ψ3〉 =
1
2
ei5π/8(|g1g2g3g4〉 + |g1g2e3e4〉

+ |e1e2g3g4〉 − |e1e2e3e4〉). (20)

This state is just a four-atom cluster state.
Next we give another simpler scheme for generating

a four-atom cluster state. Consider four atoms initially
in the state |g1g2g3g4〉. We send the four atoms through
a cavity simultaneously. The evolution of the system is
obtained by equation (13). After an interaction time λt =
π/4 and Ωt = nπ, we obtain

|ψ〉1234 =
1√
2
e−iπ/4(|g1g2g3g4〉 + i |e1e2e3e4〉). (21)

Then we again send any two of four atoms, such as the
atoms 1, 2 interact simultaneously with another cavity.
Similarly after an interaction time λt = π/4 and Ωt =
2nπ, the evolution of the state is given by equations (15)
and (16), we have

|ψ〉1234 =
1
2
e−iπ/2(|g1g2g3g4〉 + |g1g2e3e4〉

− i |e1e2g3g4〉 + i |e1e2e3e4〉). (22)

Performing the transformation|e2〉 → i |e2〉, we can trans-
form the state (20) into a four-atom cluster state

|ψ〉1234 =
1
2
e−iπ/2(|gggg〉+ |ggee〉+ |eegg〉−|eeee〉). (23)

We note that the two schemes can also be applied to the
ion trap system. We consider that N ions are confined in
a linear trap. Then we simultaneously excite the ions with
two lasers. If we tune the lasers sufficiently close to the
sidebands, we can neglect all other vibrational modes, the
Hamiltonian for the system is

H = νa+a+ ω0Sz + {Ωe−iφ
N∑

j=1

S+
j e

iη(a++a)

× [e−i(ω0+ν+δ)t + e−i(ω0−ν−δ)t] +H.c.},
where a+ and a are the creation and annihilation opera-
tors for the collective vibrational mode, and η = k/

√
2νM

is the Lamb-Dicke parameter, with k being the wave vec-
tor along the trap axis and M is the mass of the ion col-
lection. Here the lasers have the same Rabi frequency Ω,
phase φ and wave vector k.

In the Lamb-Dicke regime, the interaction Hamilto-
nian in the interaction picture is [21]

Hi = iηΩe−iφ
2∑

j=1

S+
j (a+e−iδt + aeiδt) +H.c. (24)

As described by reference [17], the evolution operator of
the effective Hamiltonian has same form as equation (9),
with λ = 2η2Ω2/δ. Thus we can generate the entangled
cluster states of four trapped ions using the procedure
similar to that for cavity QED.

In conclusion, we have proposed two simple protocols
to realize the generation of the four-atom cluster states in
cavity QED. Comparing these two schemes, we find that
the second one is always better than the first one, because
the second one only includes two interactions of atoms
with cavities and a single-qubit transformation to gener-
ate a four-atom cluster, but the first one must need more
resource and more single-qubit rotation transformations
to accomplish the same task. In cavity QED, the photon-
number-dependent parts in the effective Hamiltonian are
canceled with the assistance of a strong classical driving
field. Thus our schemes are insensitive to both the cav-
ity decay and thermal field. For the trapped ions, our
schemes are insensitive to the thermal motion. They can
be implemented by the present cavity QED and ion trap
techniques.
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